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This paper deals with the modeling and control of a piezoelectric actuator. The main

challenge for the control design is the presence of hysteresis. This nonlinearity is

represented in this paper using the Bouc–Wen model and a time-varying PID controller

is designed for micropositioning purpose. The performance of the controller is tested

using numerical simulations and experimentally.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Although the so-called classical actuators (electromagnetic, hydraulic and pneumatic) are the most used in the industry,
new technologies based on different physical principles are being developed. In applications where the size of the actuator
has to be minimized, or where fast response and high resolution are needed, the classical actuators fail to respond
appropriately. For this reason, non-classical technologies are becoming more relevant. Among them, the piezoelectric
actuators [1–3] are proving to be a reliable solution for many engineering applications, ranging from micropositioning
(machine tools, optic devices or modern microscopes) to active control of structures.

The piezoelectric actuators are based on the known piezoelectric effect described in 1880 by Jacques and Pierre Curie
[4]: in certain materials with crystalline non-symmetrical structure, dipoles are formed when the material is deformed, i.e.
a mechanical strain produces an electrical field; reciprocally, the application of an electric field produces a strain. These
actuators show a fast reaction time, a high resolution, a high energy density and an easy miniaturization. However, the
piezoelectric actuators have some drawbacks: the reduced strain (o0:2%), the presence of nonlinearities and the high
voltage needed for optimal performance. In this paper, we focus on the nonlinear behavior of piezoelectric actuators by
taking into account the presence of hysteresis. In materials, the hysteresis is referred to the memory nature of inelastic
systems where the restoring force depends not only on the instantaneous deformation but also on the history of that
deformation.

To describe the behavior of hysteretic processes several mathematical models have been proposed [5]: the Duhem
model [6] uses the property that a hysteretic system’s output changes its character when the input changes direction; the
Ishlinskii hysteresis operator has been proposed as a model for plasticity–elasticity [7]; the Preisach model has been used
for the modeling of electromagnetic hysteresis [8]; the Bouc–Wen model has been used to model wood joints and
structural systems [9]. A survey of the mathematical models for hysteresis may be found in [10]. These models have been
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applied to describe the behavior of piezoelectric actuators: Prandtl–Ishlinskii in [11], Preisach in [12–15] and Bouc–Wen in
[16]. An energy based model has been employed in [17]. The Maxwell resistive-capacitor model has been used in a number
of studies [18–21] to model piezoceramic hysteresis for position and vibration control applications.

In this work we represent a piezoelectric actuator by the Bouc–Wen model for smooth hysteresis [22]. This model
consists in a first-order nonlinear state equation, and an output equation where the input and state signals appear linearly.
This model has received an increasing interest due to its ability to capture in an analytical form a range of shapes of
hysteretic cycles which match the behavior of a wide class of hysteretical systems [23]. In particular, it has been used to
model piezoelectric elements [16], magnetorheological dampers [24,25] and wood joints [9]. The models, derived from
experiments, have been used either to predict the behavior of the physical hysteretic element [24] or for control purposes
as in [26–29].

In this paper we consider the problem of micropositioning using a piezoelectric actuator. This problem has spurred
much interest in the current literature. A robust controller is employed in [26] to control a piezoelectric bimorph actuator
using the Bouc–Wen model. In [30] a piezoelectric actuator is modeled with neural networks and controlled with a variable
structure control system. In [31], the controller uses information of the charge instead of the voltage for the control of
position. This technique takes advantage of the reduced hysteresis between the displacement and the electrical charge, but
presents some difficulty for the measurement of the charge. Since the piezoelectric device is represented in this work using
the Bouc–Wen model, the results of [28] are used and improved for the control of the piezoelectric element. In [28], a
second-order mechanical system that includes a Bouc–Wen hysteresis is considered for control purposes. The control
objective is to guarantee the global boundedness of all the closed loop signals, and the regulation of both the displacement
and the velocity of the device to zero. This objective is achieved using a simple PID controller. However, the main drawback
of this controller is that the equilibrium point of the closed loop system is not robust vis-à-vis perturbations which is
undesirable in practice. The main contributions of this paper are the following:
�
 We present a new control law which is a time-varying PID that guarantees that the equilibrium point of the closed loop
is robust to perturbations.

�
 This control law is tested in numerical simulations and experimentally using a piezoelectricactuator.

The main advantage of the proposed control law over other existing control schemes is that it is simple to implement in an
industrial context.

2. Background results

2.1. PID control of a Bouc–Wen hysteresis

We consider the second-order mechanical system described by

m€xðtÞ þ c _xðtÞ þFðxÞðtÞ ¼ uðtÞ (1)

with initial conditions xð0Þ, _xð0Þ and excited by a control input force uðtÞ. The output restoring force F is assumed to be
described by the normalized Bouc–Wen model [32]:

FðxÞðtÞ ¼ kxxðtÞ þ kwwðtÞ (2)

_wðtÞ ¼ rð_xðtÞ � sj_xðtÞj jwðtÞjn�1wðtÞ þ ðs� 1Þ_xðtÞjwðtÞjnÞ (3)

with an initial condition wð0Þ. The parameters n � 1, r40, s � 1
2, kx40, kw40, m40 and c � 0 are unknown. The range of

the parameters corresponds to the Class I Bouc–Wen model which is stable, asymptotically dissipative and
thermodynamically consistent [32]. The displacement xðtÞ and velocity _xðtÞ are available through measurements, but the
signal wðtÞ is not. Let yrðtÞ be a (known) smooth and bounded reference signal whose (known) smooth and bounded
derivatives are such that limt!1 yrðtÞ ¼ limt!1 _yrðtÞ ¼ limt!1 €yrðtÞ ¼ limt!1 yð3Þr ðtÞ ¼ 0 exponentially. This means that
there exist some constants a40 and b40 such that jyðiÞr ðtÞj � ae�bt for t � 0 and i ¼ 0;1;2;3.

The control objective is to globally asymptotically regulate the displacement xðtÞ and velocity _xðtÞ to the reference
signals yrðtÞ and _yrðtÞpreserving the global boundedness of all the closed loop signals; that is xðtÞ, _xðtÞ, wðtÞ and uðtÞ.

We assume the following:

Assumption 1. The unknown parameters lie in known intervals. That is we have m 2 ½mmin;mmax� with mmin40,
c 2 ½0; cmax�, kx 2 ð0;kxmax �, kw 2 ð0;kwmax �, s 2 ½12 ;smax�, r 2 ð0;rmax�.

Note that the unknown structure parameter n � 1 is not required to lie in a known interval.
The problem of controlling the system (1)–(3) has been treated in [28], where it is demonstrated that a PID control

insures that the displacement and velocity errors tend to zero. Introduce the variables:

x1ðtÞ ¼ xðtÞ � yrðtÞ; x2ðtÞ ¼ _xðtÞ � _yrðtÞ; x0ðtÞ ¼

Z t

0
x1ðtÞdt (4)
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and choose as a control law the PID controller:

uðtÞ ¼ �k0x0ðtÞ � k1x1ðtÞ � k2x2ðtÞ (5)

where the ki’s are design parameters. Then we have [28]

Theorem 1. Consider the closed loop formed by system (1)–(3) and the control law (5). Define the following constants:

k2min
¼

ffiffi
½

p
�2mmaxðsmaxrmaxkwmax þ kxmax þ k1Þ (6)

e1 ¼
ðcmax þ k2Þ

3

m2
min

e2 ¼
k2

1

m2
max

ðk2
2 � k2

2min
Þ

k0max
¼ min

k1k2

mmax
;�e1 þ

ffiffi
½

p
�e2

1 þ e2

� �
(7)

and choose the design gains k0, k1 and k2 in the following way: take any positive value for k1; then choose k2 such that

k24k2min
; finally take 0ok0ok0max

. In this case we have the following:
(1)
 All the closed loop signals x0, x1, x2, w and the control u are globally bounded.

(2)
 limt!1 xðtÞ ¼ 0 and limt!1 _xðtÞ ¼ 0.
2.2. Forced limit cycle description of a Bouc–Wen hysteresis

In this section, we consider the system composed only of the two equations (2) and (3) where the input is xðtÞ and the
output is FðxÞðtÞ. We consider in this section that the displacement signal is periodic so that the output FðxÞðtÞ is also
asymptotically periodic [32]. The objective of this section is to characterize analytically the asymptotic limit cycle.

2.2.1. Class of inputs

In this section, we consider that the input signal xðtÞ is wave T-periodic [32]. This means that it is continuous on the
time interval ½0;þ1Þ and periodic of period T40. Furthermore there exists a scalar 0oTþoT such that the signal x is C1 on
both intervals ð0; TþÞ and ðTþ; TÞ with _xðtÞ ¼ dxðtÞ=dt40 for t 2 ð0; TþÞ and _xðtÞo0 for t 2 ðTþ; TÞ. We denote Xmin ¼ xð0Þ
and Xmax ¼ xðTþÞ4Xmin the minimal and maximal values of the input signal, respectively (see Fig. 1). Periodic sine and
triangular signals are also wave periodic.

2.2.2. Analytic description

The Bouc–Wen limit cycle is described using the following functions that are useful for solving analytically the
differential equation (3):

j�s;nðmÞ ¼
Z m

0

du

1þ sjujn�1uþ ðs� 1Þjujn
(8)
Xmax

Xmin

0 T+ T mT mT+T+ (m+1) T

Time

In
pu

t s
ig

na
l x

Fig. 1. Example of a T-wave periodic signal.
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jþs;nðmÞ ¼
Z m

0

du

1� sjujn�1uþ ðs� 1Þjujn
(9)

js;nðmÞ ¼ jþs;nðmÞ þj
�
s;nðmÞ (10)

for any scalar m 2 ð�1;1Þ. It has been shown in [32] that the functions j�s;nð�Þ, j
þ
s;nð�Þ and js;nð�Þ are strictly increasing on

the interval ð�1;1Þ so that they are bijective. Their inverses are denoted by c�s;nð�Þ, c
þ
s;nð�Þ and cs;nð�Þ, respectively. The limit

cycle for the Bouc–Wen model is described by the following [32]:

Theorem 2. Let xðtÞ be a wave T-periodic input signal. Define the functions om and Fm for any positive integer m as follows:

omðtÞ ¼ wðmT þ tÞ for t 2 ½0; T� (11)

fmðtÞ ¼ kxxðtÞ þ kwomðtÞ for t 2 ½0; T� (12)

Then the sequence of functions ffmgm�1 (resp. fomgm�1) converges uniformly on the interval ½0; T� to a continuous function �F
(resp. �w) defined as

�FðtÞ ¼ kxxðtÞ þ kw �wðtÞ for t 2 ½0; T� (13)

�wðtÞ ¼ cþs;nðj
þ
s;n½�cs;nðrðXmax � XminÞÞ� þ rðxðtÞ � XminÞÞ for t 2 ½0; Tþ� (14)

�wðtÞ ¼ �cþs;nðj
þ
s;n½�cs;nðrðXmax � XminÞÞ� � rðxðtÞ � XmaxÞÞ for t 2 ½Tþ; T� (15)

Furthermore we have for all t 2 ½0; T�

�1o� cs;nðrðXmax � XminÞÞ � �wðtÞ � cs;nðrðXmax � XminÞÞo1

the lower and upper bounds of �wðtÞ being attained at t ¼ 0 and t ¼ Tþ, respectively.

This result means that the output restoring force goes asymptotically to a periodic function. The transient behavior is
captured by Eqs. (11) and (12) while the steady-state is captured by Eqs. (13)–(15). The loading part of the limit cycle is
described by Eqs. (13) and (14), while the unloading part is described by Eqs. (13) and (15). Loosely speaking, the functions
�F and �w denote the steady-state responses of the functions F and w, respectively.

3. Experimental platform

3.1. Experimental layout

The system under study is the patch of Fig. 2 which is a piezoelectric actuator that contains the foil PIC-255 (Physik
Instrumente). The piezoelectric actuator uses the d31 mode and it is seen as a SISO system whose input is the voltage u

applied to the 3 axis and the output is the displacement y along the 1 axis.
The actuator can be used in a number of applications ranging from active control of structures to micropositioning and

optics applications. For the sake of completeness, we give the physical characteristics of the patch. The piezoelectric
ceramic used is a PI (Physik Instrumente) PIC-255. The material shows a d31 piezoelectric coefficient of
�180� 10�12 m V�1, dielectric permittivity �T

33=�0 of 1800, elastic constant sE
11 of 16:1� 10�12 m2 N�1, density of

7:80 g cm�3 and Curie temperature of 350 	C. The piezoelectric foil shows a weight of 2:34 g and dimensions of 50 mm�
30 mm� 0:2 mm and the entire patch a weight of 3:405 g and dimensions of 60 mm� 35 mm� 0:5 mm. The piezoelectric
actuator lays in a low friction surface where it is clamped in one extreme and left free in the other in order to allow its free
movement.

The experiments have been undertaken with the platform sketched in Fig. 3. The control is performed by a DSP1

controller. The actuator is driven by means of a power amplifier whose working voltage is set by the DSP controller. The
amplifiercan work with voltages between �450 and 450 V with a maximum current of 100 mA.

The displacement of the free edge of the piezoelectric actuator is measured using a laser triangulator Micro-Epsilon

optoNCDT 1607 with range 500mm, bandwidth 10 kHz and resolution 0:1mm. The data have been acquired with a four
channel Yokogawa DL9000 (bandwidth 500 MHz). All the quantities have been sampled so that at least 25 000 samples are
provided for each plot.

3.2. System modeling

The system model is given by [26]

m0 €xðtÞ þ c0 _xðtÞ þ kaxðtÞ ¼ kbFðuÞðtÞ (16)
1 DSP stands for digital signal processor.
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Fig. 3. Block diagram of the platform.

Fig. 2. Controlled piezoelectric actuator.

O. Gomis-Bellmunt et al. / Journal of Sound and Vibration 326 (2009) 383–399 387
where ka and kb are elastic constants, m0 and c0 are the equivalent mass and damping coefficient of the piezoelectric
actuator, xðtÞ its relative position with respect to the sensor, and kbFðuÞðtÞ is the force produced by the actuator. The term
FðuÞðtÞ is assumed to follow a Bouc–Wen equation so that the actuator may be represented by

m0 €yðtÞ þ c0 _yðtÞ þ kaðyðtÞ � y0Þ ¼ kbk
0
xuðtÞ þ kbk

0
wwðtÞ (17)

_wðtÞ ¼ rð_yðtÞ � sj_yðtÞj jwðtÞjn�1wðtÞ þ ðs� 1Þ_yðtÞjwðtÞjnÞ (18)

where k0w and k0x are constant gains. The nonlinear term wðtÞ takes into account the effect of hysteresis.
Defining

m ¼
m0

kak0x
; c ¼

c0

kak0x
; kx ¼

ka

kbk0x
; kw ¼ �

k0w
k0x

(19)
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it can be seen that the actuator follows Eqs. (1)–(3). This model is valid only for low frequencies (well below the resonance
of the actuator), as an important mismatch has been observed experimentally for high frequencies.

3.3. Control objective

The control objective is to insure the boundedness of all the closed loop signals, along with the regulation of the
displacement and velocity of the piezoelectric actuator to zero. Furthermore, in steady-state, the control output has to have
a unique value so that the closed loop system has a unique equilibrium point.

4. Parameter identification

The system under consideration is described by Eqs. (1)–(3) in which the system parameters m, c along with the
Bouc–Wen model parameters kx, kw, r, s, n are unknown. The objective of this section is to determine these parameters
using the measurements of the relative displacement xðtÞ and the voltage input uðtÞ. Since we are dealing with a model
valid only for low frequencies, the terms m€x and c _x can be neglected in Eq. (1) so that the actuator model can be
approximated by Eqs. (2) and (3).

The problem of identifying the parameters of the Bouc–Wen model (2)–(3) has been treated in Ref. [33]. The technique
presented in this reference consists in choosing for uðtÞ a periodic signal with a loading–unloading shape (that is a wave
periodic signal [32]). This implies that xðtÞ is also wave periodic so that a limit cycle ðx;uÞ is obtained asymptotically. The
experimentally obtained limit cycle is then used to determine the unknown Bouc–Wen model parameters.

The identified parameters are given in Fig. 4. It can be seen that these parameters are almost constant in the frequency
range ½0;100 Hz�. The parameter values are shown in Table 1.

For higher values of the frequency, the Bouc–Wen model parameters are highly frequency dependent.
Model (2)–(3) is tuned with the parameters obtained in Table 1 (column 4), and the initial condition is calculated

fromEq. (2) as

wð0Þ ¼
uð0Þ � kxxð0Þ

kw
(20)

To check the validity of this model, it is excited with a random signal whose frequency content lies in the interval
½0;100 Hz�. Fig. 5 gives the responses of both the model and the actuator. A reasonable match is observed.

5. Control laws

This section introduces three control laws for the piezoelectric device, which are based on the linear controller of
Section 2. These controllers are tested by means of numerical simulations.

5.1. PID control

In this section we consider the closed loop formed by system (1)–(3) along with the control law (5). The closed loop is
then described by the equations:

_x0 ¼ x1 (21)

_x1 ¼ x2 (22)

_x2 ¼ m�1ð�ðc þ k2Þx2 � ðkx þ k1Þx1 � k0x0 � kww�m€yr � c _yr � kxyrÞ (23)

_w ¼ rðx2 þ _yr � sjx2 þ _yr j jwj
n�1wþ ðs� 1Þðx2 þ _yrÞjwj

nÞ (24)

where w is time dependent. In order to determine the PID constants k0, k1 and k2, we need to have known bounds on the
unknown parameters (Assumption 1). The identification process of Section 4 gives these bounds for the Bouc–Wen model
parameters kx, kw, r, s, n. Section 3.1 gives information on the rest of the system parameters. We use the following
bounds:
�
 mmin ¼ 3:98� 10�3 V s2 m�1
�
 mmax ¼ 6:63� 10�3 V s2 m�1
�
 cmax ¼ 13:43 V s m�1
�
 kx max ¼ 10:8� 106 V m�1
�
 smax ¼ 0:9212

�
 rmax ¼ 9:510� 104 m�1
�
 kw max ¼ 48:74 V
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The PID controller parameters are determined using Theorem 1. The first design parameter to be chosen
is k1 ¼ 5� 106 so that we get k2 min ¼ 567:6. We choose k2 ¼ 580 so that we obtain k0 max ¼ 1:16� 109. Finally we
take k0 ¼ 1� 109.
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Table 1
Identified parameters.

Parameter Smallest value Largest value Mean value Unit

n 1:16 1:192 1:176 –

s 0:9094 0:9212 0:9153 –

r 7:632� 104 9:5� 104 8:566� 104 m�1

kw 39:97 48:74 43:57 V

kx 9:83� 106 10:8� 106 10:35� 106 V m�1

Fig. 5. Model response to a random input function.

O. Gomis-Bellmunt et al. / Journal of Sound and Vibration 326 (2009) 383–399390
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Fig. 6 gives the behavior of the closed loop signals with m ¼ 5:3� 10�3 V s2 m�1 and c ¼ 13 V s m�1. The initial
conditions are x0ð0Þ ¼ 0 m s, x1ð0Þ ¼ 20� 10�6 m, x2ð0Þ ¼ 0:2 m s�1 and wð0Þ ¼ 0. For the reference signal, we choose yr as
the output of the second-order linear system o2

0=ðs
2 þ 2xo0sþo2

0Þ with x ¼ 0:7, o0 ¼ 2p� 500 rad s�1 and zero input;
that is, the linear system is driven only by the nonzero initial conditions yrð0Þ ¼ xð0Þ and _yrð0Þ ¼ _xð0Þ. It can be seen that the
outputs x1 and x2 are regulated to zero. Note that, although the control signal uis zero for negative times, its asymptotic
value is different from zero. This fact can be explained as follows. Taking yr ¼ 0 in Eqs. (23) and (24), it can be seen
that the four states system (21)–(24) has an infinite number of equilibrium points. These equilibria are defined by
fx1 ¼ 0; x2 ¼ 0; k0x0ð1Þ ¼ kwwð1Þ ¼ uð1Þg. It is not necessary that x0ð1Þ ¼ 0 so that the control value may be nonzero
asymptotically (see Fig. 6). In practice, this behavior is undesirable as it implies that the actuator applies a control action at
equilibrium, which means an unnecessary loss of energy. Another inconvenient of this behavior is the modification of the
equilibrium point of the system.

5.2. PID plus a sinusoidal component

The previous section has pointed out to the possible modification of the equilibrium point of the system under the
action of a PID controller. Since this behavior is not acceptable in practice, a modification of the controller is proposed in
this section to reduce this effect. The reason for having a control which is not zero asymptotically is that uð1Þ ¼ kwwð1Þ

where wð1Þ is not necessarily zero. To solve this problem, the idea would be to force the hysteretic term to go to zero
asymptotically, inducing the control to go to zero. Consider that system (1)–(3) is in open loop and choose for uðtÞ

a wave periodic input signal (see Section 2.2.1). Numerical simulations show that the obtained displacement signal xðtÞ is
also wave periodic. On the other hand, we know from Theorem 2 that, if the signal xðtÞ is wave periodic, then
the hysteretic output wð�Þ is also wave periodic and that it belongs asymptotically to the interval
½�cs;nðrðXmax � XminÞÞ;cs;nðrðXmax � XminÞÞ�. On the other hand, it can be shown that, for fixed values of the parameters
s and n, the function cs;nðmÞ is increasing with its argument m. This implies that the interval ½�cs;nðrðXmax �

XminÞÞ;cs;nðrðXmax � XminÞÞ� can be made as small as desired if the quantity Xmax � Xmin can be reduced arbitrarily.
Numerical simulations suggest that if the amplitude of the wave periodic voltage input uðtÞ is decreased, then the
amplitude of the corresponding displacement signal is also decreased.

These remarks suggest the following control law for system (1)–(3)

uðtÞ ¼ �k0x0ðtÞ � k1x1ðtÞ � k2x2ðtÞ � A sinð2pftÞ (25)

where A and f are positive design constants, and k0, k1, k2 are computed using Theorem 1. The closed loop behavior is given
in Figs. 7 and 8 with the values of k0, k1, k2 that have been determined in the previous section, and for different values of
the parameters A and f . The initial states are x0ð0Þ ¼ 0 m s, x1ð0Þ ¼ 20� 10�6 m, x2ð0Þ ¼ 0:2 m s�1 and wð0Þ ¼ 0. The
reference signal is chosen as in Section 5.1.

As noticed before, the steady-state response of the closed loop is periodic, and it can be seen that the amplitude of the
closed loop signals xðtÞ, _xðtÞ and uðtÞ decreases as A decreases. The amplitude of the steady-state closed loop signals is
independent of the frequency f . This frequency influences the settling time: the transient response of the system has a
shorter duration for higher frequencies f .

As a conclusion, adding a term A sinð2pftÞ to the PID controller makes the closed loop set point oscillating around zero.
The amplitude of the oscillations can be made as small as desired by reducing the design parameter A.

5.3. PID plus a sinusoidal component with a time-varying amplitude

The previous section has studied the behavior of a PID plus a sinusoidal component in the control law. It has been
noticed that the set point of the closed loop steady-state systems oscillates around zero. As oscillations are also undesirable
in practice, the control law has to be modified in order to eliminate them. Notice that the amplitude of the oscillations
decreases with the amplitude of the sinusoidal component of the control law. This fact suggests to use for this component a
time-varying amplitude that tends to decrease as the control law goes to zero. Since uð1Þ ¼ k0x0ð1Þ for the PID case, we
choose as control law the expression:

uðtÞ ¼ �k0x0ðtÞ � k1x1ðtÞ � k2x2ðtÞ � kAx0ðtÞ sinð2pftÞ (26)

where kA is a constant gain. The system states boundedness using the proposed controller can be demonstrated by means
of time-varying linear systems theory [34].

This control law has been tested using numerical simulations. The initial conditions are x0ð0Þ ¼ 0 m s,
x1ð0Þ ¼ 20� 10�6 m, x2ð0Þ ¼ 0:2 m s�1 and wð0Þ ¼ 0. The reference signal is chosen as in Section 5.1.

The frequency f is taken to be 100 Hz as this value makes the settling time shorter without harming the overall response
(see the previous section). Three values of kA are chosen to study the effect of this parameter. The results of the closed loop
simulations are given in Fig. 9. It can be seen that the closed loop signals x1 and x2 converge to zero and that larger values
of kA lead to a shorter settling time. Furthermore, the control value is the same before and after the perturbation so that the
equilibrium point of the closed loop remains unchanged.
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Fig. 6. Closed loop signals relative to the control law of Section 5.1.
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6. Experimental results

In this section, we apply the control laws of Sections 5.1–5.3 to the piezoelectric element of Section 3.1. The numerical
simulations conducted in the previous sections consisted in starting the system with nonzero initial conditions and seeing
how the closed loop behaves. In our experimental platform, we first close the loop (that is we apply the control law) with a
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Fig. 7. Closed loop signals relative the control law of Section 5.2. The figures in the right are a zoom in the indicated region of the figures in the left.
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set point for the control around 200 V. Then we open the loop during 10 ms in which the control is forced to have a constant
value of 72 V. Then we closed the loop again. This time instant in which the loop is closed again corresponds to t ¼ 0 in the
previous numerical simulations. In this section, we take yr ¼ 0. The position of the piezoelectric element is measured
directly so that the state x1 is equal to the measured position. The state x0 is obtained by approximating the exact integral
by a sum of rectangles. The state x2 is obtained using an Euler approximation.
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Fig. 8. Closed loop signals relative the control law of Section 5.2. The figures in the right are a zoom in the indicated region of the figures in the left.
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6.1. PID control

The controller of Section 5.1 is applied to the piezoelectric element. The PID constants are the same as in Section 5.1. The
closed loop signals are given in Fig. 10. As observed in the numerical simulations, the position error and the velocity go
asymptotically to zero, but the final value of controller output differs from its initial value. This means that the equilibrium
point of the closed loop system is not robust to perturbations.
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Fig. 9. Closed loop signals applying the control law introduced in Section 5.3 with f ¼ 100 Hz and different kA values.
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6.2. PID plus a sinusoidal component

The controller of Section 5.2 is applied to the piezoelectric element. We choose A ¼ 15 V and f ¼ 10 Hz. The constants k0,
k1 and k2 are the same as before. The closed loop signals are given in Fig. 11. Similar to what happens in numerical
simulations, the closed loop system oscillates around zero.
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Fig. 10. Closed loop signal with the controller of Section 5.1.
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6.3. PID plus a sinusoidal component with a time-varying amplitude

The controller of Section 5.3 is applied to the piezoelectric element. We choose kA ¼ 1:5� 109 and f ¼ 100 Hz. The
constants k0, k1 and k2 are the same as before. The closed loop signals are given in Fig. 12. It can be seen that the
equilibrium point of the closed loop system is the same before and after the perturbation.
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Fig. 11. Closed loop signal with the controller of Section 5.2.
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7. Conclusion

This paper has presented a new control law for a piezoelectric actuator. The main challenge for the control design is the
presence of hysteresis. The actuator has been represented using the Bouc–Wen model for hysteresis, and the model
parameters have been identified. A nice agreement has been observed between the behavior of the piezoelectric actuator
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Fig. 12. Closed loop signal with the controller of Section 5.3.
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and the obtained model. Then, three control laws have been tested both numerically and experimentally for the position
regulation of the piezoelectric device. It has been observed that a PID with a time-varying component insures that the
displacement and velocity of the actuator go to zero asymptotically, while maintaining the same equilibrium point for the
closed loop system. The tracking problem for the micropositioning of the device and the developing of a model of
the piezoelectric actuator for high frequencies are under investigation.
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